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Abstract
The complexity and functionality of proteins requires that they occupy an
exponentially small fraction of configuration space (perhaps 10−300). How
did evolution manage to create such unlikely objects? Thorpe has solved the
static half of this problem (known in protein chemistry as Levinthal’s paradox)
by observing that for stress-free chain segments the complexity of optimally
constrained elastic networks scales not with exp N (where N ∼ 100–1000
is the number of amino acids in a protein), but only with N . Newman’s
results for diffusion in N-dimensional spaces provide suggestive insights into
the dynamical half of the problem. He showed that the distribution of residence
(or pausing) time between sign reversals changes qualitatively at N ∼ 40. The
overall sign of a protein can be defined in terms of a product of curvature and
hydrophobic(philic) character over all amino acid residues. This construction
agrees with the sizes of the smallest known proteins and prions, and it suggests
a universal clock for protein molecular dynamics simulations.

1. Introduction

Levinthal raised two closely related questions in his discussion of protein dynamics [1] that are
now widely referred to as ‘Levinthal’s paradox’. The first, discussed explicitly, arises from the
number of different conformations accessible to an N∗ = 150-residue protein,which is roughly
of order 10300. This number is astronomically large compared to the number (108) sampled by
folding a natural protein: what mechanisms guide the folding process which effectively select
the right path with an accuracy of order 10292? The second question is similar but even more
demanding: how can proteins evolve if the number of possible combinations of amino acids is
similarly large? Many solutions to Levinthal’s first question have been proposed [2–10], but
most of them (which follow his suggestion, which relies on ‘guiding’ by local interactions) do
not appear to apply to its close second.

Levinthal’s combinatorial puzzle is not merely an idle scholastic exercise: the standard
Metropolis method (from 1952) for exploring protein dynamics, molecular dynamics
simulations (MDS), is a ‘brute force’ approach based solely on Newton’s equations (1687),
which does attempt to explore a very large number of different conformations [10]. If such
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exploration is really necessary, then it appears that even with the fastest and largest
supercomputers, alone or in tandem, research will necessarily be restricted to quite small
(fast-folding) proteins. We are thus led to ask, can we not take advantage of post-Newtonian
methods in theoretical physics to generate minimal approaches that will still be realistic enough
to describe actual protein functionality (for instance, the transition states characterized by
mutagenesis experiments [11])?

The first question that must be answered is whether such minimal approaches are even
possible. Levinthal’s paradox refers to the fact that protein dynamics belongs to a large class
of problems that mathematicians describe as exponentially complex (‘NP (not polynomial)
complete’ in their terms), of which the most famous example is the travelling salesman, who
visits cities once each, with minimal distance travelled. Enormous progress has been made in
solving such problems, without introducing further specific knowledge, but the present state
of the art is not encouraging. Primes can be calculated exactly at the level of Avogadro’s
number, which is very impressive, but still much too small. Variational (close, but not exact)
solutions to the travelling salesman problem are known at the level of 25 000 cities, which
sounds encouraging, until one remembers that proteins consist of 20 different amino acids (20
neighbourhoods in each city, and cities overlap!). There is one subject that is encouraging;
unexpectedly, that is games, but if one looks on protein dynamics as nature’s ultimate game,
then that example is quite interesting.

Chess is played with six different pieces on an 8 × 8 lattice. This is not so much different
from a small protein, and the rules of the game have been empirically designed to challenge, but
not overwhelm, our intelligence. Today one can buy for $50 a computer program that operates
on a PC and is competitive at the level of an international master. It took about 30 years
to develop the program. It does not use only ‘brute force’ methods; the earlier programs,
which did, played at the Class D (outright beginner) level. This success, based on combining
empirically derived principles with explicit calculation, is somewhat deceptive, because a game
of chess is similar to unfolding a protein from its (known) native state: the game begins with
all pieces on the board, which is half filled, and the pieces are gradually removed. There is
another game, the Japanese game of Go, played with one kind of piece on a 19 × 19 lattice,
which is equally (or slightly more) challenging, which begins with an empty board that is
gradually filled. Go is analogous to protein folding from a denatured state, and no progress
has been made here. The best computer programs still play Go at the Class D level.

There are many lattice models of protein dynamics, including recent studies of solvent-
mediated inter-residue interactions [12]. Using direct, or brute force methods, there are
enormous computational advantages to working on lattices. However, as discussed below,
lattice models have yielded disappointing results for the much simpler case of network glasses.
Recent theories and experiments have shown that the generic properties of network glasses
are much more easily and reliably obtained topologically off-lattice, for reasons that are well
understood.

The lessons of these examples are that both brute force and minimal lattice models are
inadequate. Moreover, if we are to achieve success, we must find the principles behind protein
dynamics, but those principles cannot be stated merely descriptively, but must be convertible
into quantitative measures that can be processed by the computer. Here we argue that these
principles are indeed hierarchical, as suggested in a resolution of Levinthal’s paradox [5].
But the quantitative hierarchy is not that given by alpha helices, beta sheets, etc, in other
words, the larger scale building blocks of the protein in real space, or loops of those blocks
(such as σ ‘contact order’ [13]); these features are consequences of, and may partially reflect,
hierarchical ordering, not its causes. Instead the relevant hierarchy occurs in an abstract space
determined by the marginal ‘π’ interactions of the protein-bending forces and hydrogen bonds.
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This immediately presents us with a problem: how do we identify the hierarchical factors that
are involved in such abstract spaces?

One approach to this problem is to study a simpler case first. Proteins can be regarded as
the most complex and sophisticated off-lattice networks known: what do we know about the
properties of simpler off-lattice networks, such as network glasses? Here the results are most
encouraging, because these simpler off-lattice networks satisfy some of the same demanding
conditions satisfied by proteins. In particular, proteins fill space very efficiently, much like
icosahedra [14], and so do network glasses. The glass-forming regions of network glasses can
be mapped out, and it turns out that their density maxima often are located at the centres of
these regions. Network glasses at the compositions of their density maxima exhibit striking
properties that shed a great deal of light on the nature of protein dynamics.

A hierarchical theory explains these generic ‘coincidences’, and indeed it has played
a major part in their discovery. First, a caveat and a claim. Glass technology, that is,
glass practice, predates modern science by millennia. Glass technology has, in fact, long
resisted the incursions of modern science (not that modern science has made many attempts to
understand glass), in part for proprietary reasons. In this environment a largely empirical and
fragmentary ceramics literature developed, apparently quite satisfactorily, until scientists made
major breakthroughs (microporous glasses, optical fibers, sol–gel synthesis). The hierarchical
theory discussed here represents the first effort to understand generically both glasses and
proteins as networks; it remains to be seen whether this theory is part of a new wave, or merely
an isolated effort that lies outside the mainstream of the narrowly specialized sociology of
science as presently practiced.

2. Network glasses

The hierarchical theory of network glasses is axiomatic. It originated with the observation [15]
that the glass-forming tendency is maximized in chalcogenide network glass alloys when
the number of valence bond constraints per atom (Nc) is equal to the number of degrees
of freedom (Nd). (Lagrange (1789) first recognized the convenience of using constraints to
describe restricted dynamics, but he considered only macroscopic examples where the number
of constraints was small.) The axiomatic condition

Nc = Nd (1)

very economically describes several properties of ideal glass networks. First, the number
of degrees of freedom/atom Nd is just the dimensionality d (ordinarily d = 3) of the space
in which the network is embedded. In other words, already at this earliest stage, one of
the most important aspects of glass networks is basic to the theory, namely, their space-
filling character. The number Nc of valence bond constraints is obtained, in the manner of
Pauling, by studying the crystal structures of corresponding compounds, together with partial
radial distribution functions in the glass, as given by diffraction experiments. In chalcogenide
glass alloys composed of atoms of similar size (for example, Ge–As–Se), the valence bond
constraints that are intact when the glass is formed by quenching from the melt are usually
all the two-body, nearest neighbour bond-stretching interactions, and the three-body second
nearest neighbour bond-bending interactions. Moreover, all the bonds are single bonds and
the atoms are coordinated as one would expect from valence chemistry, with 8 − N nearest
neighbours (Ge, 4; As, 3, and S or Se, 2).

The calculation of the σ bond-stretching contribution to Nc is very simple: each atom
contributes N/2, but the calculation of the bond-bending contribution to Nc is more subtle;
as one would expect, non-central π forces are much more difficult to handle (which is
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why they are nearly always replaced by central forces in many models of glasses, even
though it is known from analysis of both hydrocarbon and semiconductor vibrational spectra
that valence force fields are much more accurate and economical when bending forces are
included explicitly). However, by addressing this difficulty directly constraint theory reaches
a remarkable conclusion. One might think that the number of bond angles at a given N-fold
coordinated atom would be given simply by N(N − 1)/2, but for larger N this formula fails,
because not all the bond angles are linearly independent. The correct single bond formula for
d = 3 is 2N − 3, so that the number of independent bond angles is linear in N , not quadratic:
again this result is a consequence of space-filling. (Note that space-filling, which seems to be a
complex geometrical question, has been reduced to a very simple (linear) algebraic formula.)
For atoms with an average of N single bonds/atom, with stretching and bending constraints,
(1) becomes

Nc = 5N/2 − 3 = 3 (2)

or N = 2.40.
Are the results for the simplest case, Ge–As–Se, universal? By no means! However, one

can use these results as the starting point for constraint theory, and gradually expand the axioms
to include more and more complex cases. The insights obtained from constraint theory are very
different from those obtained by lattice models, even though both approaches are designed to
be consistent with space-filling, because few lattice models recognize the existence of non-
central forces, or include dimensionality explicitly, so that space filling takes place generically
and is not imposed artificially. Moreover, constraint theory is explicitly hierarchical, as the
bond-stretching forces are much stronger than the bond-bending ones. From this many have
concluded that bond-bending forces are only marginal and can be ignored in favour of spherical
or central-force pair models, but this is a dangerous assumption. It is analogous to assuming
that chemical reactivities of aromatic hydrocarbons are determined by σ bonds, but Hueckel
(and many others since) showed that it is actually the marginalπ interactions that are decisively
important. Similarly, in chalcogenide network glasses, the forces that are critical to determining
chemical trends in properties of glass transitions are usually the marginal noncentral bond-
bending forces.

There are four special cases that have been identified so far that extend the theory of
chalcogenide network glasses to oxides. The first concerns bond-bending constraints in the
presence of large size differences. Silica (SiO2) is the most important oxide glass, and there is a
large size difference between Si and O. If all the bond-stretching and bond-bending constraints
are intact, then one finds that the optimal average coordination number 〈N〉 for forming a
three-dimensional network glass is 〈N〉 = 2.40. Silica is an excellent glass-former, but
〈N〉 = 2.67. In this special case, the oxygen bond-bending constraints are broken, as shown
by a wide distribution of Si–O–Si bond angles, and a very narrow distribution of tetrahedral
O–Si–O bond angles exhibited in radial distribution functions. However, this case appears
to be exceptional: in window glass (0.74 SiO2, 0.16 Na2O, 0.10 CaO), where the network
has been diluted to a eutectic by adding Na (N = 1 Pauling resonating single bond), again
〈N〉 = 2.40. In addition to soda, lime (CaO) is included in window glass to promote chemical
stability and increase resistance to etching. The proportions of soda and lime are determined
by a second space-filling condition, namely that the average ring size is the same (6) as in the
parent material SiO2. With these two conditions, off-lattice (generic) constraint theory predicts
the composition of window glass, one of nature’s most remarkable materials, exactly (∼1%),
and uses no adjustable parameters: the composition is determined entirely topologically [16].

The second correction involves one-fold coordinated atoms, while the third involves
redundant bond-bending constraints (for example, edge-sharing tetrahedral). The fourth
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correction involves interfacial bond-bending constraints. These are often broken, for example,
across the technologically very important Si–SiO2 interface [17]. The latter is uniquely ideal
(only one defect/104) for inorganic interfaces, on a scale that is known only in proteins created
by the magic hand of evolution. Normally one does not expect that structural theories will be
accurate on this scale, and certainly lattice models, with their multiple approximations, cannot
expect to achieve such accuracies. The accuracy is a direct result of the applicability of the
‘limbo’ condition Nc = Nd.

What happens when the ‘limbo’ condition Nc = Nd is not satisfied? This question
can be answered at two levels: using mean field theory, and exactly (including all local
field corrections). Numerical simulations provided and checked the mean field answer [18].
When Nc = Nd the network is isostatic (marginally rigid). When Nc < Nd the network is
undercoordinated, and it becomes soft. Neglecting all weaker forces, the network develops a
large number of zero-frequency modes. These modes were called cyclical modes by Hamilton
(1830), and today physicists usually associate them with specific symmetries. However, in a
large disordered network with three-body bond-bending forces, there may be a large number
of cyclical modes with no discernible symmetry, lattice or otherwise. Thorpe [18] has called
these modes ‘floppy’; in practice, when weaker forces are included, these floppy modes appear
in the measured vibrational spectrum as a large peak [19] at lower frequencies whose strength
scales with Nc − Nd. These soft modes facilitate diffusion of oxygen or water molecules to
the compact globular regions of proteins; they have been called breathing modes [20]. When
Nc > Nd the network hardens and is overcoordinated. The extra constraints tend to shift
vibrational modes from peaks to valleys, but this effect is difficult to observe.

3. Strain energies are nonlocal

Any attempt to develop minimal models of protein folding should discuss the issue of whether
interactions are local or nonlocal. It turns out, as some have suspected [9], that nonlocality
in general, specifically of strain energies, is one of the keys to resolving Levinthal’s paradox.
Nonlocality of strain energies is a general property associated with mechanical equilibrium.
It is often assumed, especially in contact models, that if only short-range covalent forces are
involved, then strain energies must be local. Because of the space-filling nature of protein
chains, what actually happens is quite different. Suppose that we have an inhomogeneously
constrained polypeptide chain with side groups such that some segments are overconstrained
and rigid, while others are underconstrained and floppy. Then the actual motion of the entire
chain will redistribute the excess constraints of the rigid segments into the constraint space
of adjacent floppy segments, a process that is intrinsically nonlocal (it extends far beyond the
range of the molecular forces).

The great strength of constraint theory is that it takes qualitative ideas like this, for which
there is already considerable evidence (it has been estimated [5] that the average length of
rigid protein segments is 25–30 residues), and organizes it in the context of a rigorous and
generic theory of off-lattice networks. This theory has evolved over the last 150 years; it was
initially developed by Maxwell to discuss the mechanics of scaffolds (buildings, bridges, etc)
with only central forces, but the principles are much more general. Maxwell’s mean field ideas
have been developed by mathematicians to describe local field corrections in the context of
what they call graph theory. An algorithm for applying these ideas has been developed by
Thorpe [21], in what he calls the ‘pebble game’ (pebbles are used to count excess constraints,
and to redistribute them from overconstrained to underconstrained regions).

We now come to the most important results of the pebble game. Within a
hierarchically ordered constraint space, the pebble game eventually redistributes all excess
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constraints uniquely. Thus one has one’s cake and one eats it too: the interactions are nonlocal,
and explain the origin of large structural subunits or ‘loops’, but at the same time there is a well-
defined ‘funnel’ that always leads to the folded state. Moreover, the number of configurational
‘pebble’ steps N needed to reach the folded state is not exponential in N∗, the number of
residues, or even a polynomial in N∗ with an exponent of order 30; it is [22] rigorously linear
in N∗! (Of course, there will always be configurational barriers to these steps that impede
the real-time dynamics of protein unfolding, but the number of these barriers scales with N∗,
not exp N∗.) These properties will be characteristic not only of protein folding, but of any
dynamical process, such as evolutionary candidates for new proteins, formed by hierarchically
combining available proteins. At each step joining smaller old proteins to form larger new
ones will be simplified from exponentially unlikely in N to linear in N by the fact that the
smaller ones are already in mechanical equilibrium (nearly isostatic in their transition states
defined below). This is the mechanism that rigorously resolves Levinthal’s paradox.

4. Defining transition states

When the isostatic condition Nc = Nd is satisfied, the network undergoes a stiffness transition
from floppy to rigid; observation of the stiffness transition in network glasses is discussed
elsewhere in this volume by Vempati and Boolchand, who also shows that the single stiffness
transition defined in mean field theory usually divides into two transitions because of local field
corrections. These two transitions define the mechanical intermediate phase, which is nearly
identical to the thermal intermediate phase discussed below. In this phase an isostatic backbone
percolates through a floppy network glass matrix: the situation closely resembles a protein
immersed in (floppy) water, except that the protein is probably not perfectly isostatic. In any
case, the network glass analogue of the transition state of a protein is very well defined [22]:
let the number of floppy modes be Nf , and the average number of constraints be Nc. The
transition state occurs at the inflexion point of Nf (Nc)

d2 Nf /dN2
c = 0. (3)

The actual transition states of proteins are somewhat less well defined, but must be very similar
mechanically and thermally to the intermediate phase of network glasses.

5. A universal clock for molecular dynamics simulations

To establish the validity of constraint theory for proteins Thorpe and co-workers have stressed
its computational capabilities, for instance its successful prediction of transition state structures.
Here we have reviewed at a simpler level the way in which constraint theory resolves
Levinthal’s paradox, as well as its successes in defining transition states, which are ambiguous
in conventional molecular dynamics simulations. Whatever may be the limitations of the latter,
they are certain to occupy the attention of many workers for some time to come. If one reviews
various efforts [23], all focused on a common problem such as the transition state of protein
A (a 60 residue fast folder) [11], one is struck by the fact that even for selected ‘simple’ cases
there is no standard quantitative procedure for presenting results. Clearly what is needed is a
way of benchmarking protein dynamics that will go beyond merely qualitative descriptions of
the relative motions of rigid subunits in some vaguely defined configurational landscape.

A simple way to benchmark protein dynamics should emphasize the role played by
hydrophobic(philic) interactions in protein collapse from the denatured state through the
transition state to the fully folded native state. It should also stress marginal π interactions
explicitly. The centre of mass rn of any local peptide unit based on three consecutive Cα centres
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(n − 1, n, n + 1) determines the inside of that unit. One can define a local hydrophobicity πn

using the scalar product of two vectors, (Rn − rn) and (Sn − Rn), where Rn is the location of
Cαn , and Sn is the centre of mass of the amino acid sidegroup attached to Cαn . This product
should then be weighted by a suitable sidegroup hydrophobicity. (If the latter is close to zero, as
for glycine and serine, the corresponding triplet can be omitted from the definition of � given
below.) Thus if all the hydrophobic sidegroups are locally inside, while all the hydrophilic
sidegroups are locally outside, each πn will be positive. In fact, this is not the case even in the
native state, where there is still a partial balance of hydrophobic(philic) forces, but it is clear
that as the protein collapses from the denatured state, the number of positive πn will increase
at the expense of the number of negative ones. In other words, sign reversals will occur, and
counting these as they occur provides a natural topological multiclock that can be used for
comparing the results of different simulations. It might be that different triplet curvatures
stabilize their appropriate signs (folding) or lose them (unfolding) in different sequences, and
that these differences could be used to distinguish between different pathways.

6. Punctuated equilibrium

A very attractive feature of triplet curvatures is that they can be added to most simulation
programs with very little effort. The addition can be made in two ways: for individual curvelets,
or for the protein as a whole. In the latter case we should measure Rn and Sn from the centre
of mass of the entire protein, and define an order parameter for the protein as the product

� = �nπn . (4)

These ideas seems to be almost trivial, but they could be far from trivial if the persistence times
for sign reversals either of individual πn , or especially for their product exhibit the peculiar
crossover properties predicted for diffusion in N-dimensional configuration spaces [24].

If we assume that evolution has designed proteins so that they are optimally functional,
then each peptide unit in the protein can be regarded as an independent unit, in other words, a
separate dimension in configuration space, with no hidden symmetries that would reduce
the dimensionality, as often occurs in non-living molecules and solids. The persistence
probabilities (unchanged signs of N variables between −1 and 1) for N-dimensional diffusion
are dominated by short-time events for small N , but exhibit a crossover to qualitatively
different behaviour for large N , where they are dominated by rare (intermittent) events.
This kind of behaviour is called punctuated equilibrium [25, 26], originally conjectured as a
mechanism for evolution, for which evidence is still inconclusive at the macroscopic level [27].
The microscopic crossover behaviour identified in numerical simulations for the diffusive
model [24] occurs for N between 30 and 50, which is strongly suggestive. The smallest size
for living proteins appears to be uncertain (some examples could be only fragments), but values
for this threshold appear to fall just in the range between N ∼ 30 and 50 residues. If one thinks
of protein functionality as requiring almost perfect reversibility, then that reversibility (without
entanglement) might be best achieved by pausing between conformational events long enough
to achieve approximate equilibrium.

Persistence probabilities for reversal of � = �nπn can be easily obtained in any MD
simulation, and these can be studied as a function of n (especially for fast folders). The
theory predicts many results: first, the persistence crossover itself as a function of N ; second,
the absence of punctuated equilibrium in artificial protein mimics (in other words, only true
proteins that exhibit punctuated equilibrium are alive); and so on. In fact, it appears that this
construction may answer (in one way) a famous question [28].

There is an interesting feature of the curvelet construction: it can be used either to define a
relaxation time τn for each peptide unit from πn , or an average relaxation time τ for the entire
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protein from �. As the protein folds τ will gradually grow. The individual τn will also grow,
but not uniformly. Each curvelet will behave differently. The curvelets associated with loops
should increase gradually, while the curvelets associated with the formation of rigid units (α
helices and β sheets) should exhibit abrupt growth as the rigid units nucleate. The τn can be
plotted as functions of n, and the resulting plots should correlate well with the predictions of
constraint theory. One can conjecture that the Arrhenius activation energy τ (t) should show a
change in slope at the transition state; it is even possible that stretched exponential relaxation
would be observed.
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